受領No. 1634

記憶細胞分化とがん免疫の抑制因子を標的とした次世代 CAR NK 細胞の基盤技術の開発

代表研究者 鍋倉 宰 (愛知県がんセンター 分野長) 共同研究者 楠本 茂 (愛知県がんセンター 部長)

籍谷 勇紀 (慶應義塾大学 教授)澁谷 彰 (筑波大学 教授)

Development of next-generation CAR NK cell therapy targeting memory cell differentiation and a suppressive factor in cancer immunity

Representative Tsukasa Nabekura (Chief, Aichi Cancer Center)
Collaborator Shigeru Kusumoto (Director, Aichi Cancer Center)

Yuki Kagoya (Professor, Keio University)

Akira Shibuya (Professor, University of Tsukuba)

研究概要

免疫療法はがんの治療選択としての地位を確立したが、奏効率は未だ限定的である。現行の免疫療法は T細胞がん免疫の賦活化法であるが、がん細胞は HLA の低下により T細胞がん免疫から逃れ、治療抵抗性を獲得する。ナチュラルキラー(NK)細胞はこれらのがんを NK 受容体で認識し、傷害する事でがん免疫に必要不可欠な役割を果たす。従って、NK 細胞の賦活化法は次世代のがん免疫療法の開発に有用である。しかし、治療効果の高い NK 細胞療法は確立されていない。本研究では、ヒト血液 NK 細胞にがん特異的キメラ受容体(CAR)を導入し、NK 細胞記憶とがん免疫の抑制因子を標的として細胞機能を増強した『CAR 記憶 NK 細胞』の調整法を確立する。その後、CAR 記憶 NK 細胞のがん治療効果を患者由来腫瘍移植モデルで検証する。更に、治療効果増強における分子制御機構を解明し、次世代 NK 細胞療法の研究基盤を構築する。本研究の完遂にて、治療効果が高い NK 細胞療法の開発に直結する基盤技術と知見を獲得できる。本研究が提示する NK 細胞賦活化法は、現行の免疫療法との併用による相乗的な治療効果や、免疫療法抵抗性のがんに対して有効性が期待できる。